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ABSTRACT

In the field of sensing, a typically unavoidable nuisance is the inherent bias of a sensor due to imperfections
in timing, calibration, and other sources. The errors incurred by the bias ripple through higher-level processes
such as tracking and sensor fusion, causing varying effects to each operation. In many different applications,
such as track-to-track correlation, the overall effect of the biases on state estimation is modeled as a constant,
translational shift in the position dimension of the track states. This assumption can be appropriate when the
required precision of the track states is not stringent. However, in general, sensor bias can not only affect position
estimates but also positional derivatives, i.e., velocity, acceleration, in a manner that can change dramatically
depending on sensor-target geometry; for situations where high state estimation accuracy is required, these
consequences become apparent and need to be handled.

The contribution from measurement bias to state estimation error depends on many different aspects, e.g.,
measurement uncertainty, dynamic model uncertainty, sensor-target geometry. The focus of this work is the
quantification of the relative significance of measurement error and measurement bias in the resultant state
estimation error. In short, using the results in this work, it is straightforward to: (i) determine regimes where
measurement bias becomes a predominant factor, (ii) bound the impact of the sensor bias on the outputted
tracking information, (iii) analyze the dependence of the tracking error on sensor-target geometry, all of which
can be of great impact when designing a tracking system architecture.
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1. INTRODUCTION

The error of a state estimator contains contributions from many different mechanisms, e.g., measurement noise,
measurement bias, modeling mismatch, and sensor-target geometry. The relative importance of these error
sources can vary dramatically from one application to another. For instance, in circumstances with low signal-
to-noise ratio, errors may be dominated by measurement noise with relatively negligible impact from measurement
bias or model. To address this disparity, a candidate state estimator may require tailoring by adding or removing
nuisance parameters to the state to achieve a desired level of precision and accuracy. Thus, it is of primary interest
to quantify the relative significance of the constituent factors to state estimation error. The main sources of error
considered in this work are process noise, measurement noise, and measurement bias. The objective is to analyze
the relative contribution of measurement bias to resultant state estimation error and, subsequently, determine
when it is necessary to account for measurement bias during state estimation.

Multisensor, multitarget tracking is a practical application for which error analysis is of particular interest, as
successfully combining tracking data from a network of sensors hinges on the ability to characterize the errors of
each sensor. More specifically, multisensor tracking architectures at a fusion node are commonly constructed by
combining the outputs of a set of bias-naive (i.e., do not account for measurement bias) multitarget trackers. Upon
receiving track states from each sensor, the fusion node does consider the effects of measurement bias for each
sensor by assuming that the track states from each sensor are shifted in position by a fixed amount that is different
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from sensor to sensor; this assumption is crucial in many track-to-track association' 6 algorithms. After track-
to-track association is completed, the estimates from each sensor are fused and outputted. If the assumption that
all track states are a constant translational shift from the truth is violated, track-to-track correlation may have
issues and/or the fused track states might be inconsistent; thus, it is imperative to understand how measurement
bias affects positional derivative (i.e., velocity, acceleration) state estimates.

The effects of measurement bias on state estimation error have been studied in varying degrees across a
collection of other works. An initial discussion of measurement bias in state estimation was raised in the context
of performance analysis”® for suboptimal, reduced order filters. Bias-naive estimation can be seen as an instance
of reduced order filtering in which the filter state has fewer dimensions than the true dynamic state. Further, the
implications of measurement and dynamic model mismatch on the estimation error covariance were considered as
part of sensitivity analysis®'° for optimal linear filtering and smoothing. These analyses produced expressions
for the error covariance as functions of the difference between the true and assumed models. Likewise, error
covariance analysis'!>'2? in the presence of measurement biases was performed, illustrating the evolution of state
estimation error covariance from measurement to measurement. In this work, a narrower scope is assumed than
previous related treatments. This allows for discussion of both linear and non-linear systems, deterministic and
stochastic biases, and simpler alternative derivations for estimation error moments. Additionally, a measure of
significance of the measurement bias on the eventual estimation error is defined and illustrated.

The paper is organized using the following structure. Section 2 provides the mathematical background for
a bias-naive state estimation technique, the definitions of the error statistics of interest, and their subsequent
expressions in the context of linear systems. Building upon these results, Section 3 extends the error statistic
expressions to the class of nonlinear systems using suboptimal filtering and linearization techniques. To measure
the impact of bias on the estimation error, a bias significance measure is introduced in Section 4. Finally, a
summary of the work and results is presented in Section 5.

2. BIAS-NATVE STATE ESTIMATION FOR LINEAR SYSTEMS

To understand the consequences of measurement bias on the output of state estimation, one can analyze the
error statistics of an estimator that assumes there is no measurement bias but, in reality, only has access to
biased measurements. To begin, consider a sensor observing a target whose dynamics can be described using the
time-varying state, xj, where k = 1,2,... is a discrete time index. The sensor takes measurements of the target
state at time instances, tj, such that the measurement at time t; can be written as

zr = Hypxp + Grbg + wy, (1)

where Hy, is a known measurement matrix, Gy is a known mapping from bias space to measurement space, by, is
a time-varying measurement bias, and wy, is additive measurement noise that is distributed as wy ~ A(0, Ry,).
Accordingly, the target state evolves according to a discrete-time dynamic model given by

Xk =®p p_1Xp—1 + Vi, (2)

where ®;, .1 is the state transition matrix from time t;_; to time ¢, and vy, is additive process noise distributed
as v ~ N(0,Qy). The distribution of the initial state, xg, is Gaussian and known. Both the measurement noise,
wy,, and process noise, v, are independent from time instance to time instance and of each other. Presently, no
assumptions are made on the form of the measurement bias, by.

To form the bias-naive estimator, it is assumed that the bias term in (1) vanishes, i.e., Gyby = 0. Then, the
system described in (1) and (2) is linear with Gaussian noise inputs. With this setup, the optimal minimum-mean-
square-error estimator is the Kalman filter'3 in which the state estimate, Xy |k, and state estimate covariance,
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P} |«, evolve according to the following:

Xk k=1 = Prk—1Xp—1|k—1, (
Piieo1 = Phs1Pr1s1®4 41 + Qu, (3b

Xig |k = Xpo ko1 + K (21 — HiXp -1) (
Piin =1 - K Hg) Pyjpi, (3d
-1
K; = Pk|k—1H£ (HkPk:“c—lHZ; + Rk) . (3e

Because of the strict linear structure of the system in (1)-(2), the errors of the estimator in (3) will be a linear
function of the bias. In the rest of this section, the linear projection of the bias history into the error mean and
its subsequent effect on the covariance is derived.

Before continuing, it is now pertinent to introduce the two error moments that are to be studied. More
specifically, the primary concern is the effect that the measurement bias, by, plays in the mean and covariance
of the estimation error; these are defined respectively as

mkéE[&k‘k—xk], (4)
CkéE[(f{k‘k—Xk—mk) ()A(k|k—xk—mk)T:|. (5)

Note that the behavior of these quantities will change depending on linearity of the system, sensor-target geom-
etry, time variation of the measurement bias, and other factors. Because of this, multiple circumstances will be
considered. Initially, the measurement bias is assumed to be an unknown, deterministic value, and estimation
error for linear systems are considered.

2.1 Unknown, Deterministic Bias

To begin, it is of interest to investigate the estimation error statistics for an unknown, deterministic measurement
bias. This provides insight into the consequences on estimation as a function of an unknown measurement bias
trajectory. This is important to understand as the performance of the estimator can differ appreciably even
within small variations of measurement bias trajectories. The following theorem provides the estimation error
statistics that explicitly rely on the measurement bias.

Theorem 1. The estimation error mean and covariance with an unknown, deterministic bias, by, can be written
for a linear system as

k
my = ZA:ZCKz’Gibiv (6)
i=1
Cr =Py, (7)
where
k
Ak _ H (I — KjHj)‘Dj)jfl, i<k
i G=it1
I, i = k.

Additionally, the mean and covariance obey the following recursive relations:
my, = (I - KyHy) ®p p—1my_1 + K Giby,
Cr = (I-K;Hy) (‘I)k,k—lckflq)z,k—l + Qk) :

The proof of Theorem 1 is given in Appendix A.

It is important to note that the mean of the state estimation error in (6) is now dependent on the measurement
bias; in fact, the expression in (6) can be viewed as a weighted projection of the measurement bias history into
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the space of target dynamics. It is also of value to point out that the recursive relationships for the error mean
and covariance posed in Theorem 1 agree with expressions in previously published® results.

A case of particular interest is a constant bias, which is a common assumption in many bias estimation and
track-to-track correlation algorithms. This is a popular assumption as it simplifies system model definition, and,
commonly, measurement biases vary extremely slowly in comparison to the rate of observation. To address a
constant bias, the following corollary gives the error statistics for a bias that remains the same over the duration
of target observation.

Corollary 1. For a constant bias, i.e., by = b, the estimation error mean and covariance given in Theorem 1
can be simplified as

mj = Skb,
Cr =Py, (8)
where
k
Sk =Y AK,G, (9)
i=1

Further, the matrices Sy, satisfy the following:
S =I-K;H)®rr—1Si—1 + Ky

Proof. In the case of a constant bias, the mean can be simplified as

k
my, = Y AK,Gb;,

i=1

k
= (ZAfKiGZ) b,
i=1
= Sib.
As the bias does not play a role in the covariance, Py, the proof is concluded.
The matrix Si can be interpreted as the projection of the constant bias vector, b, into the state estimate at time

ti. From the form given in (9), Sy is a weighted combination of the Kalman gains used at each measurement in
the observation history.

To illustrate the distribution of state estimation errors with a biased sensor, an example is now shown using
a sensor that observes a target undergoing constant velocity motion. The target state, xj, is explicitly defined
as

X =

where z, y, and z are the position coordinates of the target in a Cartesian coordinate system, and z, y, z are
the respective time derivatives, i.e., velocities. In this case, the state transition matrix, ®; 1, is given by

1 00 Ay 0 0
01 0 0 A, 0
(I) oo 1 0 0 A
BE=l7= 00 00 1 0 0 |
000 0 1 0
000 0 0 1
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where Ay =t — tp_1. The sensor makes position measurements every 0.5sec directly in the Cartesian space in
which the target dynamics are defined. The measurement error standard deviations are 1 m in the z dimension,
100m in the y dimension, and 100 m in the z dimension. The measurement matrix, Hy, can be written as

100 0 0O
H,=|01 00 00
0 01 00O

Note that the form of Hj implies that only the position dimension of the target state is observed. Also, the
measurement matrix is constant with respect to time; later, this will be seen to have consequences in how the
measurement bias affects the estimation error. The measurement bias, by, is a constant bias injected directly
(i.e., G = I) with shifts of 200 m, 50 m, and -50 m in the x, y, and z dimensions, respectively. The process
noise covariance, Qy, is of the form'3

1AM 1A

Qr=q
IAZT A

where ¢ = 0.001 m?/s? is the power spectral density of the process noise.

Figure 1 shows the state estimation error resulting from running a Kalman filter on 20 Monte Carlo trials of
random measurements. Additionally, the mean and standard deviation of the error as described in (6) and (7)
are also shown. As can be observed, the mean and covariance in (6) and (7) match well with the distribution
of the errors from the different Monte Carlo trials. Further, the effect of the bias can be clearly observed in the
position errors of the state estimates; due to the constant, linear dynamics and measurements, the velocity errors
are not evidently affected by the constant position bias. This will notably change in the presence of nonlinear
and/or time-dependent measurement mappings.

Position Error (m)
Velocity Error (m/s)

198 . - . 5% - . -
0 100 200 300 400 0 100 200 300 400
Time (sec) Time (sec)
(a) Position error in z-dimension. (b) Velocity error in z-dimension.

Figure 1: State estimation error (for 20 Monte Carlo runs) in the 2 dimension of a Cartesian coordinate system.
Solid black lines show the mean, my from (6), and dashed black lines show the standard deviation in that
dimension, obtained from the covariance Cy, in (7).

2.2 Stochastic Bias

Up until now, the bias was assumed to be an unknown, deterministic quantity; thus, the error statistics can be
seen as a function of a variable bias. However, it would also be of interest to derive error statistics when the bias
can be described by a stochastic process. An appreciable distinction to the unknown, deterministic bias case is
that the expected value used in the derivation of the error moments also includes the probability distribution of
the bias. The following theorem produces the error statistics for a stochastic bias:

Theorem 2. Let the bias, by, be a wide-sense-stationary Gaussian stochastic process’* with constant mean,
E[by] = u, and autocovariance given for all k as Vy = FE [bkbg-f-z]- Also, it is assumed that the bias is drawn
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independently of the measurement noise process, wi. Then, the estimation error mean and covariance for a
linear system can be expressed as

m; = Sku, (10)
Cir =Bk + Py i, (11)
where Sy is as defined in Corollary 1 and
E ok T
By = > Y AIKGV, i (AJK,G,) (12)
i=1 j=1

Proof. In this case, the mean of the error statistics can now be written as

k
i=1

AFK;G,E by,

I
<M”

=1

|
7))

L Uu.

Now, the estimation error covariance can be derived as
Cy,=F [((fikm —¥eik) + Fere —xk)) (R e = Yeix) + Frn —Xk))T} ;
ZE[(fimk—S’mk) (fck|k_$’k|k)T]+Pk|k7 (13)

due to the independence of the measurement noise, wy, and bias, by. Plugging (35) from Appendix A into (13),
the result in (11) is obtained. O

The matrix, By, is the effective inflation in covariance due to the presence of bias; for largely varying or highly
correlated biases, this term can become the predominant factor in the total error covariance.

As with an unknown, deterministic bias, the error statistics for a stochastic bias can be simplified in the case
of a constant bias; this is given in the following corollary:

Corollary 2. If the bias is also constant, i.e., by = b, the estimation error mean and covariance erpressions
from Theorem 2 can be simplified as

m; = Skll,
Ci, =S, VS] + Py 4, (14)
where Sy is as defined in Corollary 1 and V = F [bbT].

Proof. In the case of a constant bias, the autocovariance function, Vg, no longer depends on the lag parameter,
£. Thus, letting V, = V in the expression for By in (12), one obtains the result in (14). O

To illustrate the effects of a random bias on the error statistics, the example in Figure 1 is now briefly
revisited. Now, for each Monte Carlo trial, the bias is drawn from a known distribution. In Figure 2, the effect
of a random bias on state estimation error is shown for the linear system presented originally in Figure 1. For
this case, the bias is constant and drawn from a Gaussian distribution with covariance,

2002 0 0
V= 0 502 0 ;
0 0 502
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where the dimensions are x (meters), y (meters), z (meters), respectively. It can be observed in Figure 2 that the
random bias manifests itself as a random positional shift that remains constant over time. Further, the velocity
error in Figure 2b is not affected by a random bias as it appears to have the same behavior as in Figure 1b;
intuitively, this stems from the net effect of the bias being a constant translational shift over time, which does
not alter positional derivatives, e.g., velocity, acceleration.

600 -

400

200

200 f=

Position Error (m)
o
Velocity Error (m/s)

-400

600

0 100 200 300 400 o 100 200 300 400
Time (sec) Time (sec)
(a) Position error in z-dimension. (b) Velocity error in z-dimension.
Figure 2: State estimation error (for 50 Monte Carlo runs) in the = dimension of a Cartesian coordinate system.
Solid black lines show the mean, my from (10), and dashed black lines show the standard deviation in that
dimension, obtained from the covariance Cy, in (7).

3. BIAS-NAIVE STATE ESTIMATION FOR NONLINEAR SYSTEMS

Many practical systems can only be described using nonlinear functions for the evolution of the state or the
mapping from the state space to the measurement space. Due to the nonlinearities, many interesting phenomena
can arise in how measurement bias manifests itself within the total estimation error. Accordingly, the focus of
this section is to extend the results of linear systems provided in Section 2 to suboptimal filtering for nonlinear
systems. The measurements of the target state are now expressed as

z = hi () + Gibi + Wy, (15)

where hg(+) is a known measurement function, Gy, is a known mapping from bias space to measurement space, by
is a time-varying measurement bias, and wy, is additive measurement noise which is distributed as wj, ~ A(0, Ry,).
Likewise, the target state evolves according to a discrete-time dynamic model given by

Xk = Gp k-1 (Xk—1) + Vi, (16)

where ¢ k—1(-) is the state transition function from time t;x_q to time t;, and vy is additive process noise
distributed as vy ~ N (0,Qg). The distribution of the initial state, xq, is Gaussian and known. Both the
measurement noise, wg, and process noise, vg, are independent from time instance to time instance and of each
other.

As with the linear system, the bias-naive estimator is constructed by assuming that the bias term in (15)
is negligible, i.e., Ggby = 0. In this case, the system described in (15) and (16) is nonlinear with Gaussian
noise inputs. Due to its ubiquity, the suboptimal estimator considered in this paper is the extended Kalman
filter'3 (EKF); the state estimate, X |k, and state estimate covariance, Py |y, of the bias-naive estimator follow
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the equations
Xk ko1 = Orh—1 (Rp—1[k-1) » (17a)
Piieo1=Phs1Prot5s1®4 oy + Qi (17b)
Xi |k = X k-1 + K (26 — hie (Xp6-1)) 5 (17¢)
Ppip=0-KiH)Prig, (17d)
K =Py HY (HpPy o HE + Rk)_l ) (17e)

where
D1 = 2% k-1 (%) (18)
7 8X , x:ik—l\k—l ,
Hk = éhk (X) (19)
ox

X=Xp | k-1

The matrices in (18) and (19) are the Jacobians for the state transition and measurement functions, respectively.

The Jacobians for the state transition and measurement functions play a key role in the results to follow. In
fact, the error statistics for nonlinear systems will appear identical to that of linear systems; however, the ability to
express the error distributions as linear functions of the bias requires first order Taylor series approximations—a
common approach to dealing with system nonlinearities. These approximations manifest themselves by replacing
the measurement matrix, Hj, and state transition matrix, ®j 1, from linear systems with their Jacobian
counterparts.

Something else worth noting is the choice of Jacobian used for the approximation. A critical degree of free-
dom when using linearization techniques is the point around which a function is linearized. Some commonsense
choices for this application include the current unbiased track state, the current biased track state, the true state,
or a mixture of the three. Alternatively, one could also use different linearization points for each instance of a
nonlinear mapping within the error derivation. To simplify the results and allow for possible online estimation of
error statistics, the current biased track state is used for the point of linearization. For systems with extremely
large biases and/or highly nonlinear functions, this choice may prove inadequate and, possibly, higher order ap-
proximations are necessary. However, the results shown later demonstrate the efficacy of the chosen linearization
as the error statistics derived predict the true error behavior very closely.

To see how linearization is incorporated into the previous results for linear systems, the error statistics for
an unknown, deterministic bias in a nonlinear system are now given.

Theorem 3. The estimation error mean and covariance with an unknown, deterministic bias, by, can be
approzimated for a monlinear system as

k
i=1
Cr =Py, (21)
where
k
Ak’ _ H (I — KjHj)Qj,j—h 1<k
t ) j=itl
I, =k,

and @ 1 and Hy, are defined in (18) and (19), respectively. Additionally, the mean and covariance obey the
following recursive relations:

my, = (I - KgHg) @ —1mi_1 + KiGiby,
Cr = (I-K;Hy) (‘I’k,k71ck71¢£k_1 + Qk) .
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The proof of Theorem 3 is given in Appendix B. Simplification of the error statistic expressions from a time-
invariant bias is described in the follow corollary.

Corollary 3. If the bias is also constant, i.e., by, = b, the estimation error mean and covariance given in
Theorem 8 can be simplified as

my = Sk:b7
Cr =Py, (22)

where

k
Sk => AK,Gi,

i=1
and Af is as defined in Theorem 8. Further, the matrices, Sy, satisfy the following:
Sp = (I - KyHy)®px—1Sk—1 + K.
Proof. Result follows from proof of Corollary 1.

To demonstrate the behavior of state estimation error using a biased sensor with nonlinear measurements, an
example is now given. More specifically, a sensor with measurements similar to a phased array radar!'® is used to
estimate the state of a ballistic target. The state transition function, ¢y x—1(xx—_1), is obtained by numerically
integrating a ballistic model'® previously provided. The measurements are taken in range-projection space (also
known as RUV space) with standard deviations of 1 m, 1 msin, and 1 msin in the range, u, and v dimensions,
respectively. The measurement function (conversion to range-projection space) can be summarized as

Va?+y?+ 22
X
hy (xk) = VaZt+y2422 )
y
Va2+y?422
where z, y, and z are components in a sensor-centered Cartesian coordinate system, and the output dimensions
are the range, u, and v dimensions, respectively. The measurement bias is constant (i.e., Gx = I) with shifts of

10 m, 500 usin, and -500 usin in the range, u, and v dimensions, respectively. The process noise covariance is
defined by the continuous time process noise covariance, Q(t), given as

o
=
~—
I
Q
coocooo
coocooo
coococoo
co~RroooO
orocooo
—ooooo

where, as in the linear system, ¢ = 0.001 m?/s? is the power spectral density of the process noise. The state
estimate covariance is now obtained via numerical integration from time step to time step.

Similar to the previous example with a linear system, Figure 3 shows the behavior of the state estimation
errors using bias-naive filtering. It can be seen that despite the measurement and dynamics both being described
using nonlinear functions, the error statistics still follow closely the mean and covariance expressions in (6) and
(7). However, there is one main difference from the linear case—the mean of the error in both position and
velocity changes with time even though the bias that is injected is constant. This is due to the varying effect of
the nonlinear measurement mapping depending on sensor-target geometry.
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Position Error (m)
Velocity Error (m/s)

100 200 300 400 0 100 200 300 400

Time (sec) Time (sec)
(a) Position error in z-dimension. (b) Velocity error in z-dimension.

Figure 3: State estimation error (for 20 Monte Carlo runs) in the z dimension of Earth-centered rotating (ECR)
coordinate system. Solid black lines show the mean, my from (20), and dashed black lines show the standard
deviation in that dimension, obtained from the covariance Cy in (21).

3.1 Stochastic Bias

Similar to the discussion on linear systems, the error statistics for a stochastic bias in a nonlinear system are
now studied.

Theorem 4. Let the bias, by, be a wide-sense-stationary Gaussian stochastic process'* with constant mean,
E[bg] = u, and autocovariance given for all k as Vy = E [bkberZ]. Also, it is assumed that the bias is drawn
independently of the measurement noise process, wi. Then, the estimation error mean and covariance for a
nonlinear system can be approximated as

mg; = Sku, (23)
Cr = Bi + Py 1, (24)
where A¥ is as defined in Theorem 3 and
ko k T
B =Y > AIKG:V; i (AJK;G;)
i=1 j=1

Proof. Result follows from proof of Theorem 2.

As with an unknown, deterministic bias, the error statistics for a stochastic bias can be simplified in the case of
a constant bias; this is given in the following corollary:

Corollary 4. If the bias is also constant, i.e., by = b, the estimation error mean and covariance given in
Theorem 4 can be simplified as

mj; = Skll,
Ci =Sk VS] + Py, (25)

where Sy, is as defined in Corollary 3 and V = E [bbT].

Proof. Result follows from proof of Corollary 2.
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In Figure 4, a random bias is now injected into the nonlinear system (i.e., ballistic motion, ranging measure-
ments) used for the results in Figure 3. For this example, the bias is drawn from a Gaussian with covariance

102 0 0
V=] 0 000025 0 ,
0 0 0.000252

where the dimensions are range (meters), u (sin), v (sin), respectively. The behavior of the state estimation error
is markedly different from the error trajectories in Figure 3. In Figure 4, the error covariance is dominated by
the inclusion of the bias term, Sy VST,

3000
2000

— 0
E | (]
= 1000 £
3 5
woo, £

w
S 2
3 1000 8
o G
o >

L . A 15 1 L .
0 100 200 300 400 0 100 200 300 400

Time (sec) Time (sec)
(a) Position error in z-dimension. (b) Velocity error in z-dimension.

Figure 4: State estimation error (for 50 Monte Carlo runs) in the x dimension of Earth-centered rotating (ECR)
coordinate system. Solid black lines show the mean, my from (23), and dashed black lines show the standard
deviation in that dimension, obtained from the covariance Cy, in (21).

4. BIAS SIGNIFICANCE

As mentioned in the introduction, it is of primary interest to develop a measure of the relative impact that
measurement bias plays in the resultant estimation error. To address this, the concept of bias significance is now
given. Let the total bias significance, Ay, of an estimator for an unknown, deterministic bias be defined as the
Mahalanobis distance!” between the assumed error distribution and the true error distribution. The Mahalanobis
distance, d, between two distributions with means m, and m; and covariances C, and C, is defined as

d=/(m, —my)” (Cy + Cy) ™ (m, — my).

Now, the assumed estimation error distribution for the bias-naive estimator is A/ (07 Py k), while its true error
distribution is A/ (my, Cg) from (6) and (7). With those distributions, the total bias significance at time k can
be calculated as

Ak = \/(mk —0)" (Pys +Pk|k)_1 (my —0),

Tp-1
m; P, | M
=4 —=F 26
: (26)
Note that if the bias is identically zero, then, using (6), the true estimation error mean is zero, my = 0, and the
bias significance is zero, A\, = 0. Further, one can separate the contributions from state components by looking
at the significance in a subset of state dimensions, e.g., position, velocity.

In Figure 5, the bias significance for the linear and nonlinear systems presented in Sections 2 and 3 are
given. For the linear system, the total significance is high, meaning that the presence of bias causes a large
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deviation in the expected error distribution. However, it can be seen by analyzing the significance in position
and velocity separately that the position plays the dominant role in the total bias significance. This is due to the
fact that the bias is constant and injected into the position dimensions of the measurement. A negligible amount
of velocity error is due to cross-correlation between position and velocity in the initial state estimate. Looking
at the nonlinear system, a similar trend can be observed. The total significance in Figure 5b is large due to the
high position error incurred by the bias. However, a major difference between the linear and nonlinear systems
is that the velocity significance is no longer negligible in the nonlinear system. This is due to the velocity errors
incurred by the fact that, even though the measurement bias is constant, the measurement Jacobian changes
over the course of the observations.

To see the variation of the bias significance with a stochastic bias, significance trajectories are plotted for a
set of Monte Carlo trials (over measurement noise and bias) in Figure 6. It can be seen that the total, position,
and velocity significance can vary dramatically based on bias realization.

51 - Total J 21 — Total
10 —— Position 10 —— Position
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»n » 10°F

105} 1071
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Time (sec) Time (sec)
(a) Significance for linear system. (b) Significance for nonlinear system.

Figure 5: Bias significance for deterministic, unknown bias.

For a stochastic bias, the average squared value of the significance can be obtained in closed form. This can
be shown by first noting the following;:

1 _
B[] =5E {mZPkﬁkmk} :
1
=5E (m/ L, "L, 'my;],

= 2B [or (L mim L))
= %tr (L,'E [mm] | LT,

where Ly, is from the Cholesky decomposition'® of Py such that Py, = LyL]. Finally, using the form of the
estimation error mean from (6), the average squared value of the significance can be expressed as

1
E[N] = 5t (L Bely ") (27)

where By, is as defined for linear systems in Theorem 2 and nonlinear systems in Theorem 4. Further, if the bias
is constant, i.e., by =band V=F [bbT}, then (27) can be simplified to

1
EX] =5 tr (L 'Sk VSIL, "), (28)

where Sy, is defined above in Corollary 4. In Figure 7, the expression for the mean squared significance in (28)
is compared against the Monte Carlo trials in Figure 6b.
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Figure 6: Bias significance for stochastic bias.

5. CONCLUSIONS

In this work, several expressions were derived for the mean and covariance of the estimation error of a bias-naive
estimator for both linear and nonlinear systems and deterministic and stochastic measurement biases. These
results should prove useful in quickly examining the impact of bias on state estimation error for a fixed trajectory.
Additionally, a measure of the relative importance of measurement bias is provided to allow for the quantification
of deviations in assumed error statistics caused by measurement bias.

Simulation results were presented that illustrated the efficacy of the mean and covariance formulae and also

Proc. of SPIE Vol. 10646 106461K-13



Squared Significance

- 0 100 200 300 400
Time (sec)
Figure 7: Squared bias significance for stochastic bias with expected value. Significance trajectories for 50 Monte
Carlo trials are shown in red; expected value from (28) is shown in black.

illustrated notable phenomena in the estimation error of nonlinear systems. Specifically, a constant measurement
bias injected into a nonlinear system can lead to appreciable velocity error biases that need to be considered
in filter design. In future work, some topics to be studied are asymptotic behavior of estimation error and the
incorporation of target maneuvers and dynamic model mismatch.

APPENDIX A. PROOF OF THEOREM 1

To aid in the decomposition of the mean and covariance of the state estimation error, it is possible to introduce
the bias-free estimator y;, |, that has access to the unbiased measurements z; = zp — Gpby. Note that yy |
obeys the same set of equations, (3), except zj is replaced with zj. In this case, one can rewrite (4) as

my, = B[Rk + (=Y |k + Ve k) — X&) 5
=E [Xp k= Vi8] + E [Tk — Xk] (29)
=E [R5 — Vi k] - (30)

Note that the term E [y — Xx] in (29) vanishes as y¢|0 = E[xo] and for k =1

Elyi)1 —x1] = E[I1—-KiHy) (®1,0500 — %0) + Kiw1],
= (I-KiH)) (®1,050/0 — £ [x0]) + K1 E [w1],
=0.

If it is assumed that E [§_1|k—1 — Xx—1] =0, then

Eyrk—xi] =B [(I—KiHg) (®rp—155-11-1 — Xx) + Kpwg]
= (I - KiHg) (®rio—1E [Yr-1(5-1] — E[xx]) + KpE [wWg],
=0.

Likewise, the covariance in (5) can be observed to be

~ ~ ~ ~ ~ ~ T
Ci :E[(Xk|k+(—y/c|k+y/c|k)—Xk—mk) (Xi i+ (=T |k + Ii k) — Xk — my) },

ZE[((f%m—S’m) + (Vepe = xu) —me) (Reje = Feie) + (Frr — xx) —mk)T}~ (31)

Proc. of SPIE Vol. 10646 106461K-14



The terms in (30) and (31) can be calculated as
Xi |k — Xk = Xpg -1 + K (Hexp + Grby + wi — HpXp k1) — X,
=Xy o1 — Xk + K (Hexp — HpXp 121) + Ki (Gebr + wy)
Vb — Xk =Y k-1 + Ki (Hexp + wp — HpYp k1) — X,
=V k-1 — Xk + K (Hixp — HpYpo-1) + Kiwy,

X — Yok = 0= KeHg) (X -1 — I h-1) + KpGibi, (32)
Rewriting (32) in terms of past state estimates, one obtains
Xeio — Yok = 0= KieHe) (Rrp—1%X5-1 1 5-1 — Prk—1%—1k-1) + KrGrby. (33)
The state estimate difference in (33) can now be expressed as
Xiik — Ve = T —KH,) @5 51 (X1 k-1 — Yi—1|x-1) + KeGrby. (34)

Starting the recursion in (34), it can be observed that the initial state estimate difference is
X1 —¥y11 =T —-KiHy) @14 (X010 — Jo|0) + K1G1by,
=KiGiby,
since Xg|9 = Yo|0 = £ [Xo]. Continuing on to the next time step,

X202 — Y212 = (I — KoHo) @21 (%11 — ¥1)1) + K2Gaby,
= (I - KQHQ) @2,1K1G1b1 —+ K2G2b2.

Finally, taking the recursion to the k' time step, one can write

k
Xk — Vi =Y _ATK;Gib;. (35)
i=1

Thus, using (35) and the fact that by is an unknown, deterministic value, the mean and covariance of the state
estimation error can be simplified as

k
=1
C = B[ (s =) G =)
=Prk 37)

where Py}, is the error covariance of the estimator with unbiased measurements, yy |-

APPENDIX B. PROOF OF THEOREM 3

To begin, the terms in (30) and (31) are examined. However, it should be noted that due to the nonlinearities
in the measurement and state transition functions, the expected value of the unbiased track state error can no
longer be proven to be identically zero, i.e., E [yk |k — xk] 2 0; this is due to typically small perturbations that
arise from the initial state estimate error propagating through the suboptimal filter. However, in most cases, this
term will provide negligible contribution to the error after a few measurements and is therefore ignored. With
this, the terms in the mean and covariance expressions in (30) and (31) are

Xi |k — Xk = X k-1 + K (hi (x1) + Gbr + Wi — by (X5 5-1)) — X,
=Xy k1 — Xk + Ki (he (1) = b (k1 5-1)) + Ki (Grbi +wy) ,
Vilk — Xk = Vi h—1 + Ki (he (%) + Wi = hie (F&|5-1)) — X,
=Y h—1 — %k + K (i (%) = b (F516-1) ) + Kiwy,
Xi 1k — Yk = X =1 — Yk h—1 — Ki (i (R k1) — b (F516-1)) + KiGib. (38)

Proc. of SPIE Vol. 10646 106461K-15



To continue, the first of two linearization steps is taken—replacement of the measurement function, hy(-), using
its first-order Taylor series approximation around the current biased track state. Specifically, the following
replacement is made:

hie (%5 k1) — P (Fi ) k—1) =~ Xy m1 — Hi¥e -1, (39)

where Hy, is as defined in (19). Using (39) in (32), the state estimate difference can now be written as
Xk — Yo = T — KeHy) (Xg o1 — Y p-1) + KpGrby. (40)
Rewriting (40) in terms of past state estimates, one obtains

X1k — Yipe = T = KHy) (drp—1 (X—1(5-1) — Sk,p—1 (Fr—1)5-1)) + KrGrbg. (41)

Similar to the linearization step taken with the measurement function, the state transition function, ¢ x—1 (-),
will now be replaced with its first-order Taylor series approximation around the previous biased track state such
that

Grk—1 (Ri|k—1) — Pkk—1 (T o-1) = Prp—1Xp k-1 — Rr k1Y k| k-1,

where ®, ;_1 is as defined in (18). The state estimate difference in (41) can now be expressed as
Xi o — Yipp = = KeHy) @5 51 (X1 5—1 — Vi1 4-1) + KeGiby. (42)

The rest of the proof follows from the proof of Theorem 1, starting with (34).
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