
Error Statistics for Bias-Naïve Filtering in the Presence of Bias

Zachary Chance and Stephen Relyea

SPIE DCS 2018—Signal and Data Processing for Small Targets

19 April 2018

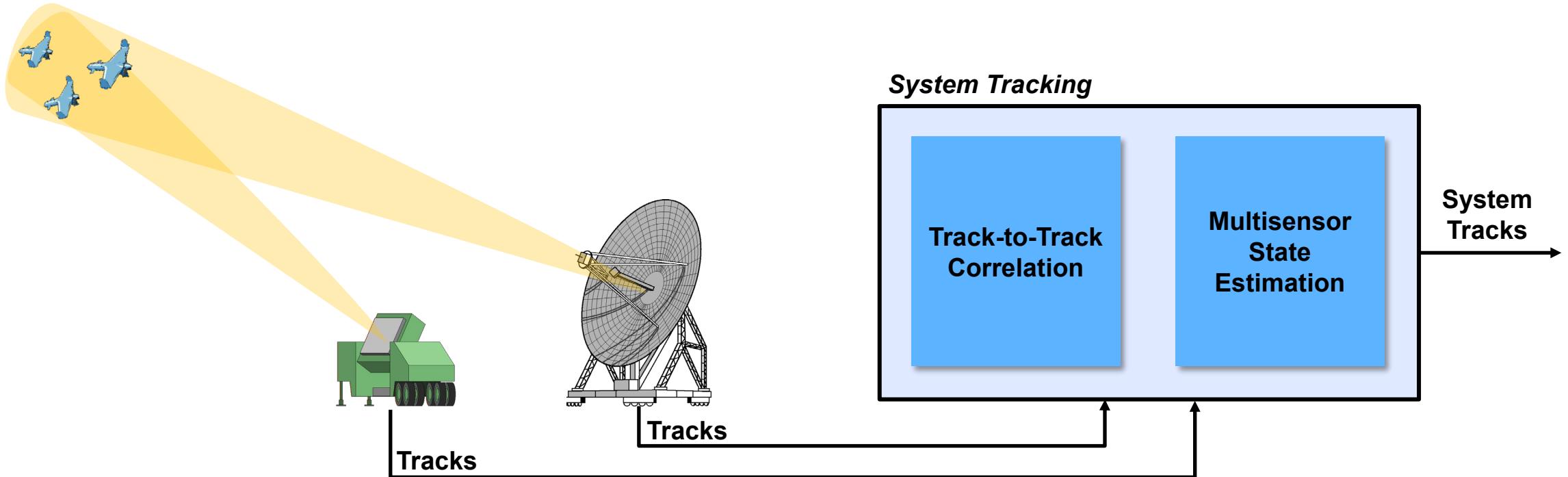
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

© 2018 Massachusetts Institute of Technology.

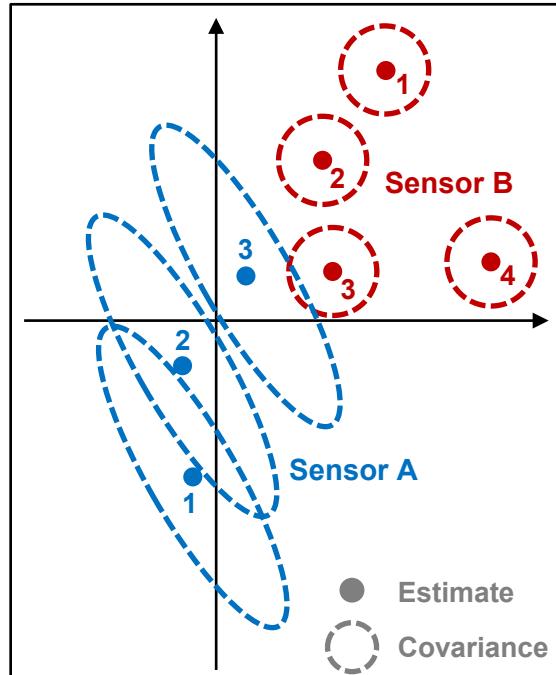
Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Multisensor, Multitarget Tracking

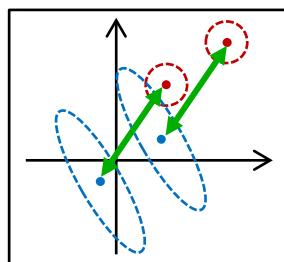


- Many commercial and defense applications require the integration of tracking information from multiple sensors due to limitations such as coverage and varied phenomenology
- An unavoidable step in multisensor tracking is the association of tracks from one sensor to another, i.e., *track-to-track correlation*

Track-to-Track Correlation



Track-to-Track Correlation

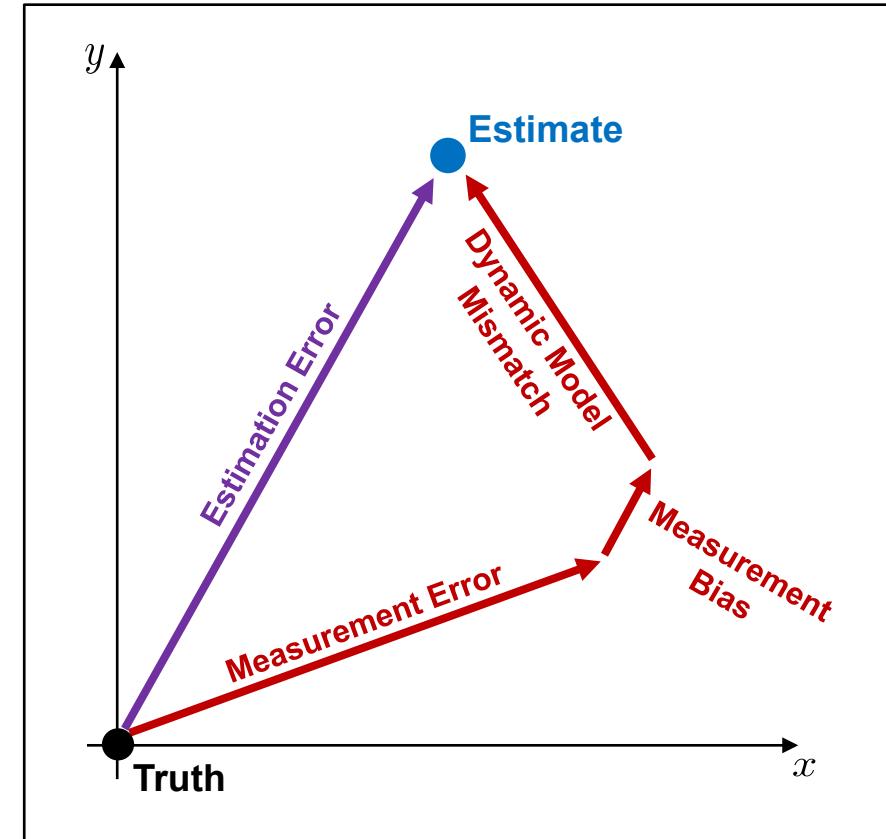


Translational Shift Assumption

- Tracks from multiple sensors need to be grouped as common targets before fusion of information
- Typical nuisance is measurement bias which differs from sensor to sensor
 - Commonly represented as a translational shift of the track states in position
 - Many track-to-track correlation algorithms hinge on this assumption
- In reality, estimation error from measurement bias can actually:
 - Vary from track to track within a single sensor
 - Alter positional derivatives, e.g., velocity, acceleration
- Important to understand to what degree this assumption is violated

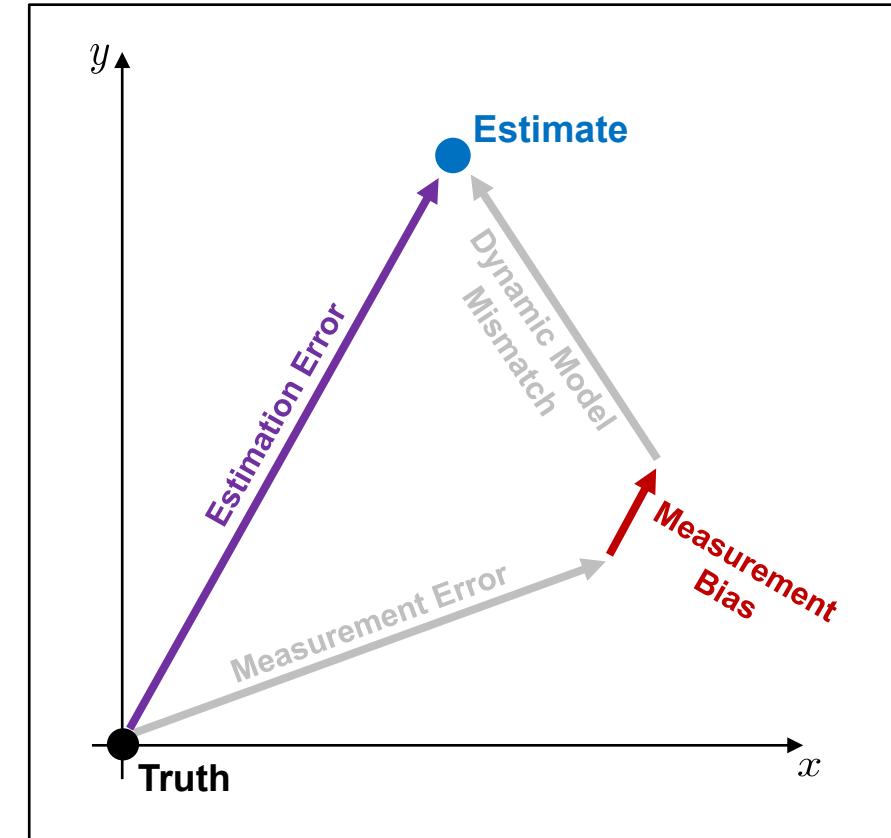
Estimation Error Contributions

- Error of an estimator is an aggregation of multiple factors:
 - Measurement error
 - Measurement bias
 - Dynamic model mismatch
 - ...
- Depending on the system model, each factor can be a role of varying importance
- When designing a filter, it is critical to understand the sources of error and their relative significance in the total estimation error



Significance of Measurement Bias

- Objective is to quantify the effects of measurement bias on the error statistics of an estimator
- Related work:
 - Performance analysis for reduced order filtering [Warren73], [Asher75]
 - Sensitivity analysis for model mismatch [Brown71], [Gelb74]
 - Covariance analysis with bias [Asher76], [Fitzgerald71]
- This work has a narrower scope than previous treatments, allowing for:
 - Analysis of linear and nonlinear systems
 - Consideration of deterministic and stochastic biases
 - Simpler, alternative derivations of related results

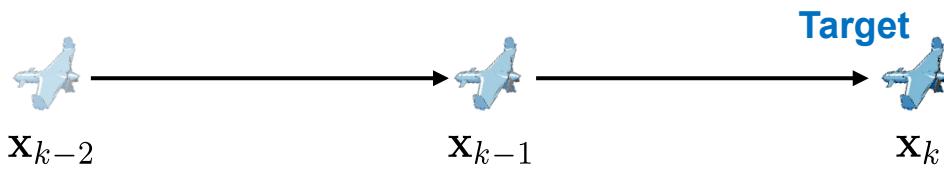


Outline

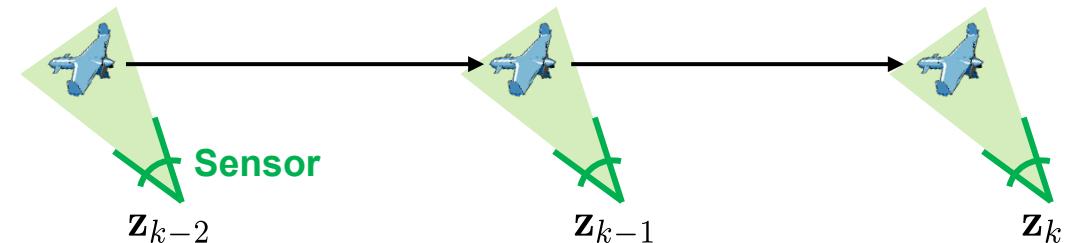
- Introduction
- ➔ • Error Statistics for Linear Systems
- Error Statistics for Nonlinear Systems
- Bias Significance
- Summary

Linear Systems

Target Dynamics



Measurements



$$x_k = \Phi_{k,k-1} x_{k-1} + v_k$$

Target state

State transition matrix

Process noise¹

$$z_k = H_k x_k + G_k b_k + w_k$$

Measurement

Measurement matrix

Bias measurement matrix

Measurement bias

Measurement noise²

Target motion described with discrete-time, linear, recursive function with process noise

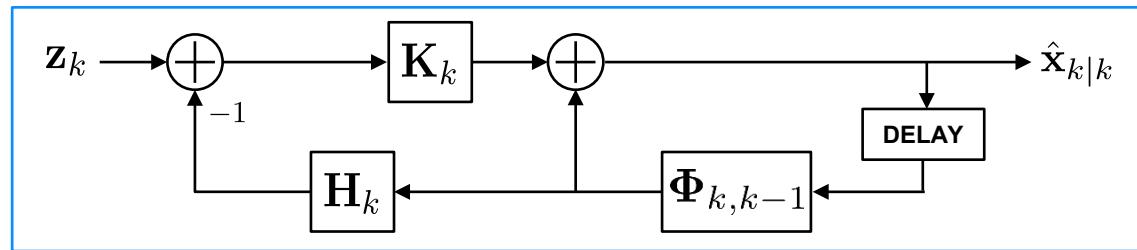
Sensor measurements are taken at discrete times and are a linear function of the target state, measurement bias, and measurement noise

¹ $v_k \sim \mathcal{N}(0, Q_k)$

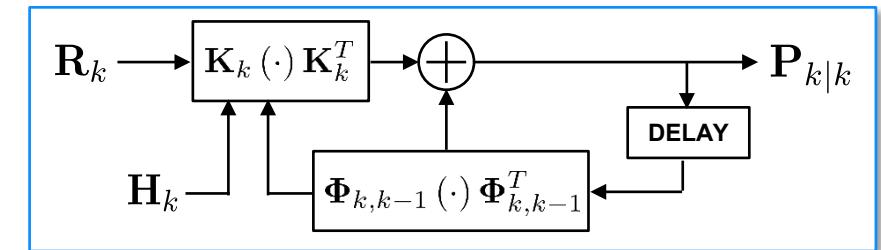
² $w_k \sim \mathcal{N}(0, R_k)$

State Estimation and Error

- For linear system with Gaussian inputs, optimal MMSE estimator is the *Kalman filter*
- If bias is assumed to be negligible (i.e., bias-naïve), the Kalman filter follows:



Bias-Naïve Kalman Filter State



Bias-Naïve Kalman Filter Covariance¹

- Subsequent focus is the calculation of the estimation error moments for the bias-naïve Kalman filter in the presence of bias

$$\mathbf{m}_k = E[\hat{\mathbf{x}}_{k|k} - \mathbf{x}_k]$$

$$\mathbf{C}_k = E \left[(\hat{\mathbf{x}}_{k|k} - \mathbf{x}_k - \mathbf{m}_k) (\hat{\mathbf{x}}_{k|k} - \mathbf{x}_k - \mathbf{m}_k)^T \right]$$

Estimation Error Mean and Covariance

¹Note that state estimate covariance unaffected by presence of bias

Deterministic Bias in a Linear System

- For a deterministic bias trajectory, \mathbf{b}_k , the estimation error mean and covariance for a linear system can be written as

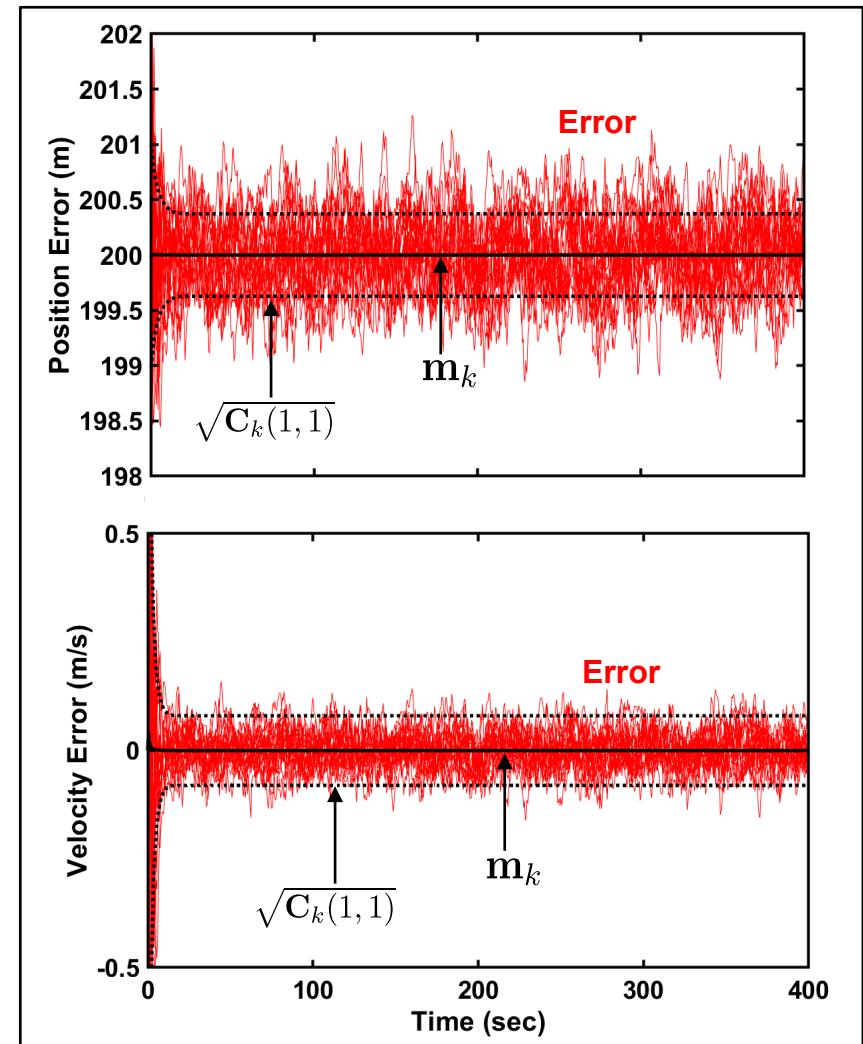
$$\mathbf{m}_k = \sum_{i=1}^k \Lambda_i^k \mathbf{K}_i \mathbf{G}_i \mathbf{b}_i \quad \mathbf{C}_k = \mathbf{P}_{k|k}$$

where

$$\Lambda_i^k = \begin{cases} \prod_{i=1}^k (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \Phi_{k,k-1}, & i < k \\ \mathbf{I}, & i = k \end{cases}$$

- $\Lambda_i^k \mathbf{K}_i \mathbf{G}_i$ is a weighted projection of the bias at time i into the expected estimation error at time k
- Example—constant velocity target, Cartesian position measurements, and a constant bias

$$\mathbf{R}_k = \text{diag} \left((1 \text{ m})^2, (100 \text{ m})^2, (100 \text{ m})^2 \right) \quad \left| \quad \mathbf{b}_k = [200 \text{ m}, 50 \text{ m}, -50 \text{ m}]^T \right.$$



Monte Carlo Trials of Example Linear System¹

¹20 Monte Carlo trials over measurement noise; Error in x dimension shown

Stochastic Bias in a Linear System

- For a stochastic bias with constant mean, u , and autocovariance, V_k , the estimation error mean and covariance for a linear system can be written as

$$m_k = S_k u \quad | \quad C_k = P_{k|k} + B_k$$

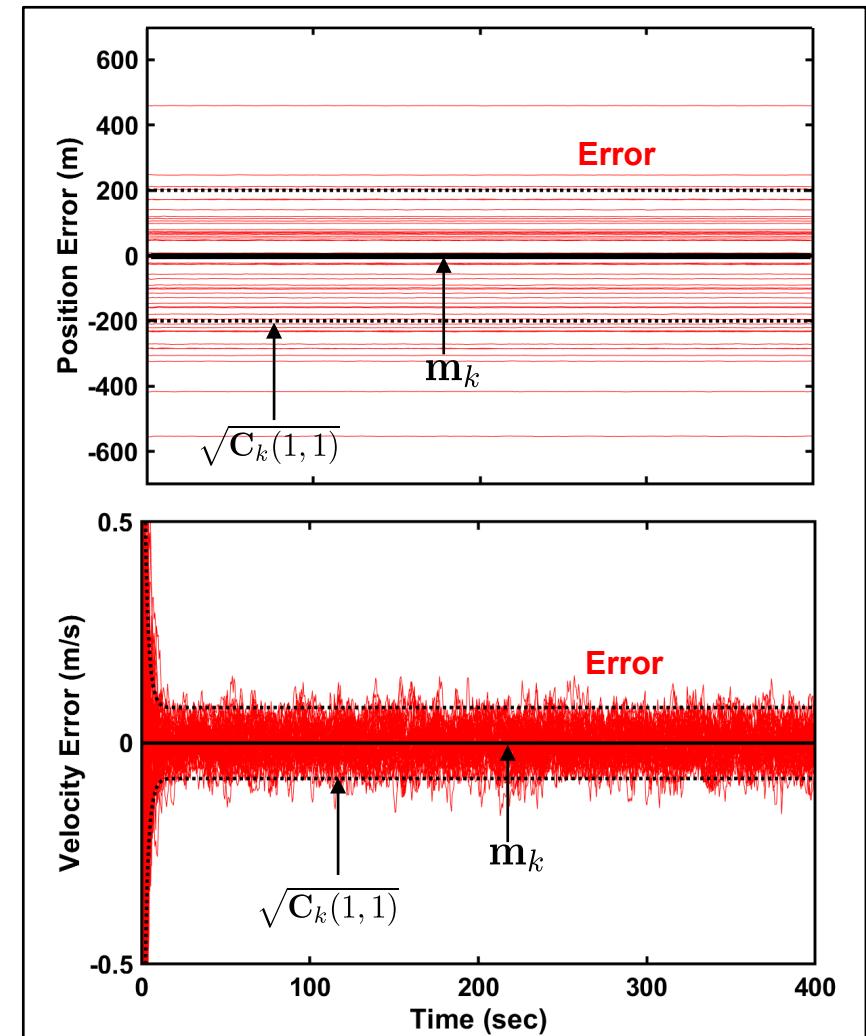
where

$$S_k = \sum_{i=1}^k \Lambda_i^k K_i G_i$$

$$B_k = \sum_{i=1}^k \sum_{j=1}^k \Lambda_i^k K_i G_i V_{j-i} (\Lambda_i^k K_i G_i)^T$$

- Example (cont'd)—measurement bias is now drawn from a Gaussian distribution

$$E [b] = 0 \quad | \quad E [bb^T] = \text{diag} \left((200 \text{ m})^2, (50 \text{ m})^2, (50 \text{ m})^2 \right)$$



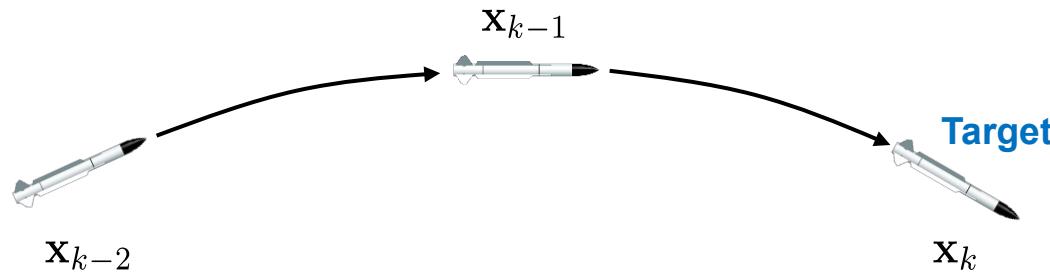
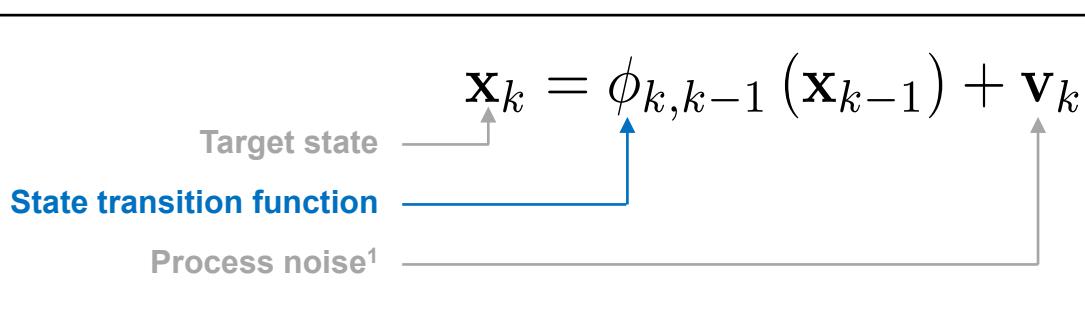
¹20 Monte Carlo trials over measurement noise and measurement bias; Error in x dimension shown

Outline

- **Introduction**
- **Error Statistics for Linear Systems**
- ➔• **Error Statistics for Nonlinear Systems**
- **Bias Significance**
- **Summary**

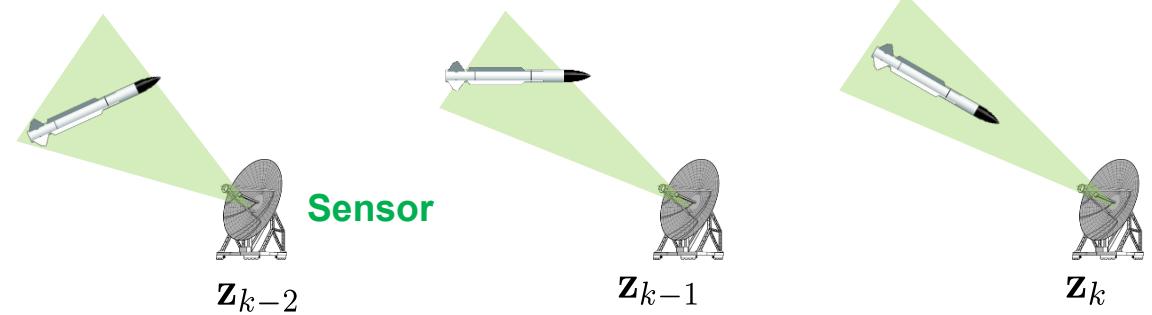
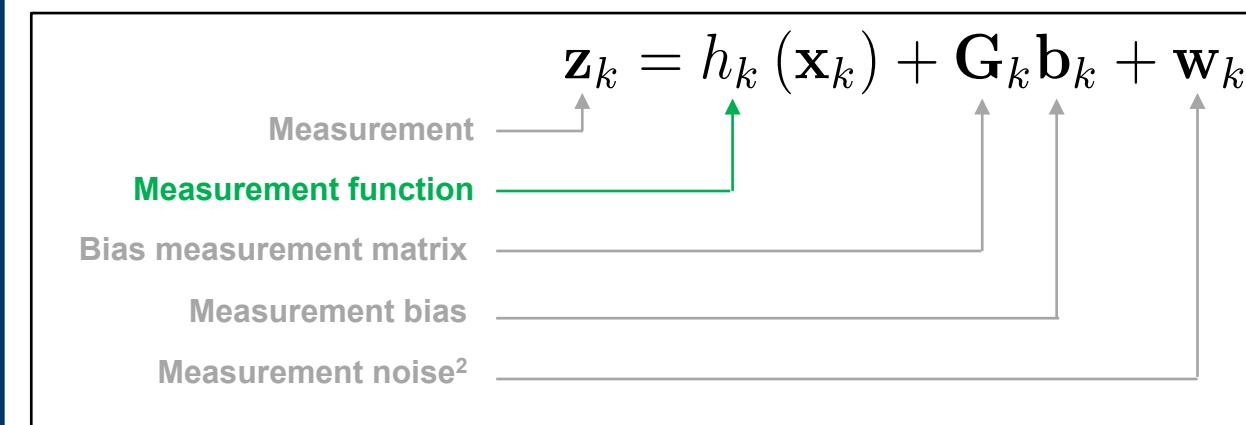
Nonlinear Systems

Target Dynamics



Target motion described with discrete-time,
nonlinear function

Measurements



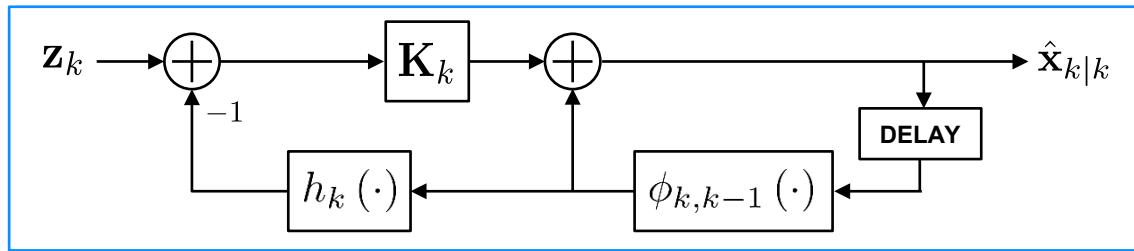
Sensor measurements are taken at discrete times
with a nonlinear dependence on the target state

¹ $\mathbf{v}_k \sim \mathcal{N}(0, \mathbf{Q}_k)$

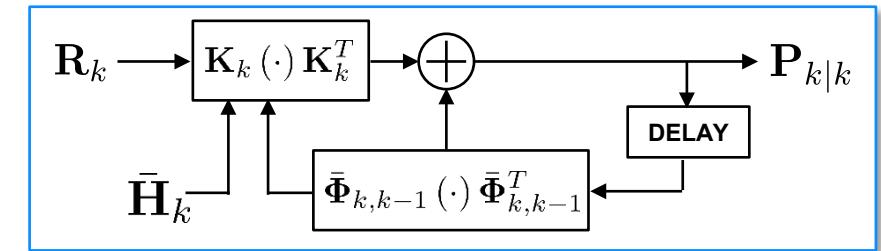
² $\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{R}_k)$

Nonlinear Systems and Linearization

- Due to nonlinearities, the Kalman filter is no longer optimal; because of its ubiquity, the extended Kalman filter (EKF) is used for error analysis
- If bias is assumed to be negligible (i.e., bias-naïve), the EKF follows:



Bias-Naïve EKF State



Bias-Naïve EKF Covariance¹

- Primary approximation of the EKF is the use of Taylor series to represent the nonlinear dynamics and measurement functions

$$\bar{\Phi}_{k,k-1} = \frac{\partial}{\partial \mathbf{x}} \phi_{k,k-1}(\mathbf{x}) \quad \bar{H}_k = \frac{\partial}{\partial \mathbf{x}} h_k(\mathbf{x})$$

Linearized Dynamics and Measurement

- Linearization point for this work is chosen as the current bias-naïve state

Deterministic Bias in a Nonlinear System

- For a deterministic bias trajectory, \mathbf{b}_k , the estimation error mean and covariance for a linear system can be written as

$$\mathbf{m}_k = \sum_{i=1}^k \Lambda_i^k \mathbf{K}_i \mathbf{G}_i \mathbf{b}_i \quad \mathbf{C}_k = \mathbf{P}_{k|k}$$

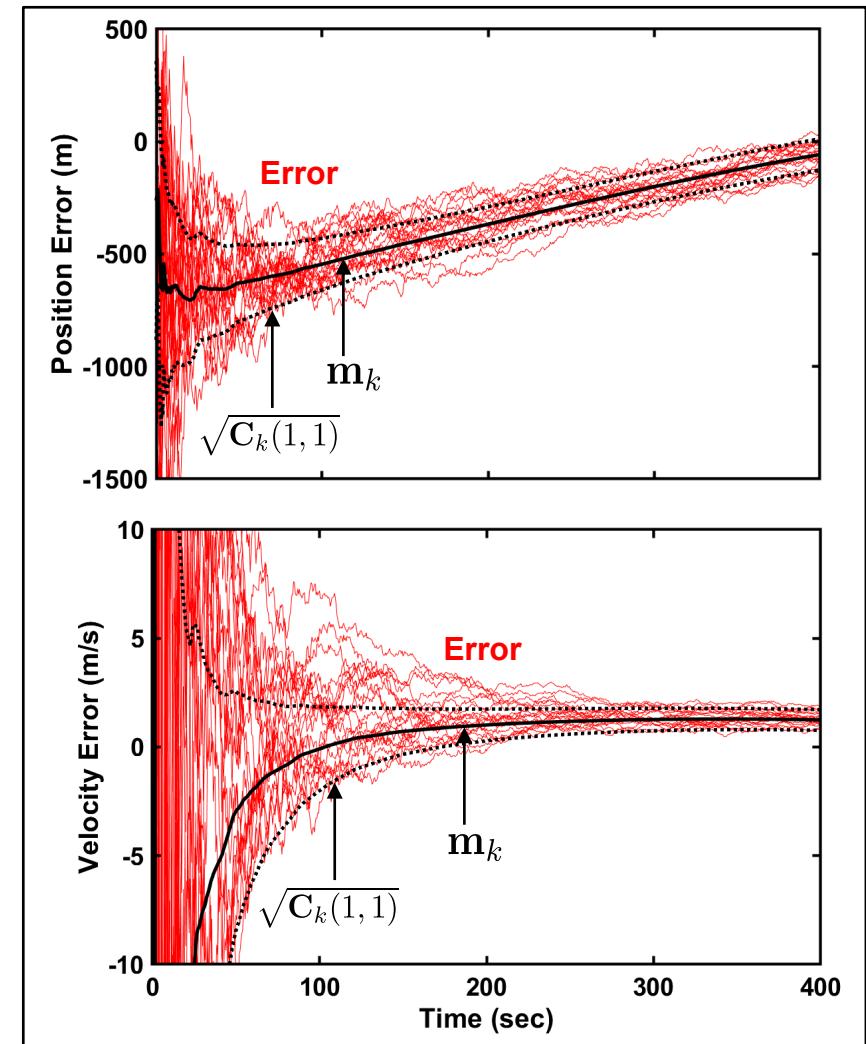
where

$$\Lambda_i^k = \begin{cases} \prod_{i=1}^k (\mathbf{I} - \mathbf{K}_k \bar{\mathbf{H}}_k) \bar{\Phi}_{k,k-1}, & i < k \\ \mathbf{I}, & i = k \end{cases}$$

- Example—ballistic target motion, phased array measurements (RUV), and a constant bias

$$\mathbf{R}_k = \text{diag} \left((1 \text{ m})^2, (1 \text{ m} \sin)^2, (1 \text{ m} \sin)^2 \right) \quad \mathbf{b}_k = [10 \text{ m}, 0.5 \text{ m} \sin, -0.5 \text{ m} \sin]^T$$

- Main difference is that the expected error is now *time-varying* despite the bias being constant



Monte Carlo Trials of Example Nonlinear System¹

¹20 Monte Carlo trials over measurement noise; Error in x dimension shown

Stochastic Bias in a Nonlinear System

- For a stochastic bias with constant mean, u , and autocovariance, V_k , the estimation error mean and covariance for a linear system can be written as

$$m_k = S_k u \quad | \quad C_k = P_{k|k} + B_k$$

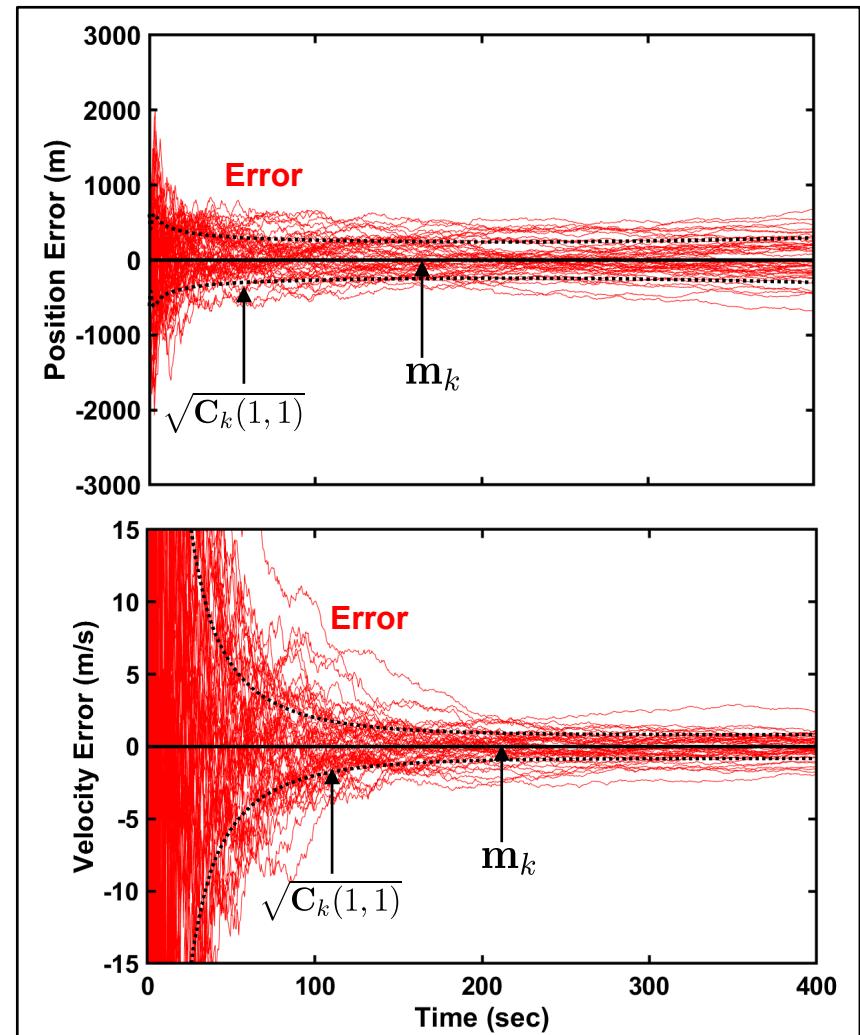
where

$$S_k = \sum_{i=1}^k \Lambda_i^k K_i G_i$$

$$B_k = \sum_{i=1}^k \sum_{j=1}^k \Lambda_i^k K_i G_i V_{j-i} (\Lambda_i^k K_i G_i)^T$$

- Example (cont'd)—measurement bias is now drawn from a Gaussian distribution

$$E[b] = 0 \quad | \quad E[bb^T] = \text{diag} \left((10 \text{ m})^2, (0.25 \text{ m} \sin)^2, (0.25 \text{ m} \sin)^2 \right)$$



¹20 Monte Carlo trials over measurement noise and measurement bias; Error in x dimension shown

Outline

- **Introduction**
- **Error Statistics for Linear Systems**
- **Error Statistics for Nonlinear Systems**
- ➡• **Bias Significance**
- **Summary**

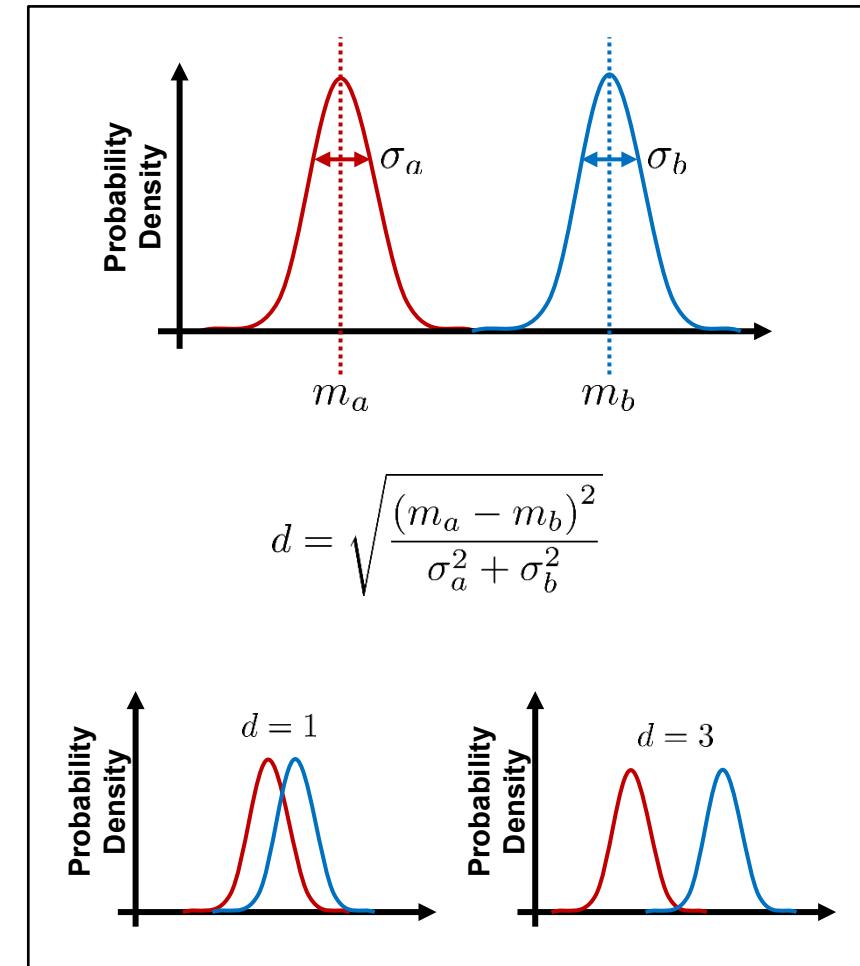
Bias Significance

- Important to quantify the mismatch in expected and actual error distribution caused by measurement bias
- As mismatch increases, performance of track-to-track correlation and multisensor fusion are expected to decrease
- Common distance metric for distributions is Mahalanobis distance:

$$d = \sqrt{(\mathbf{m}_a - \mathbf{m}_b)^T (\mathbf{C}_a + \mathbf{C}_b)^{-1} (\mathbf{m}_a - \mathbf{m}_b)}$$

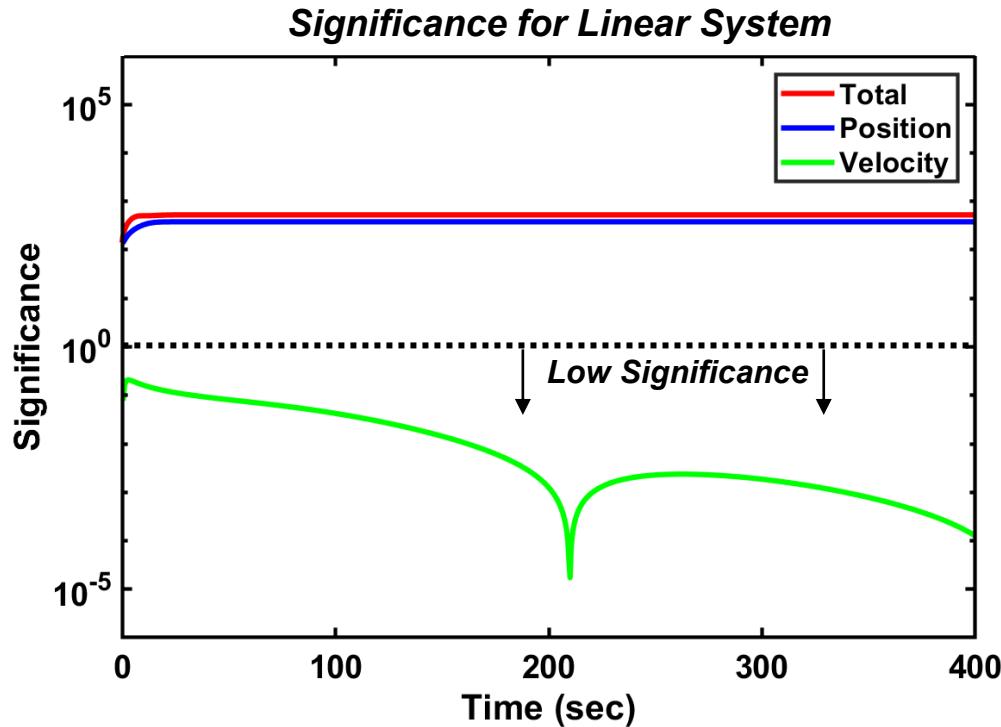
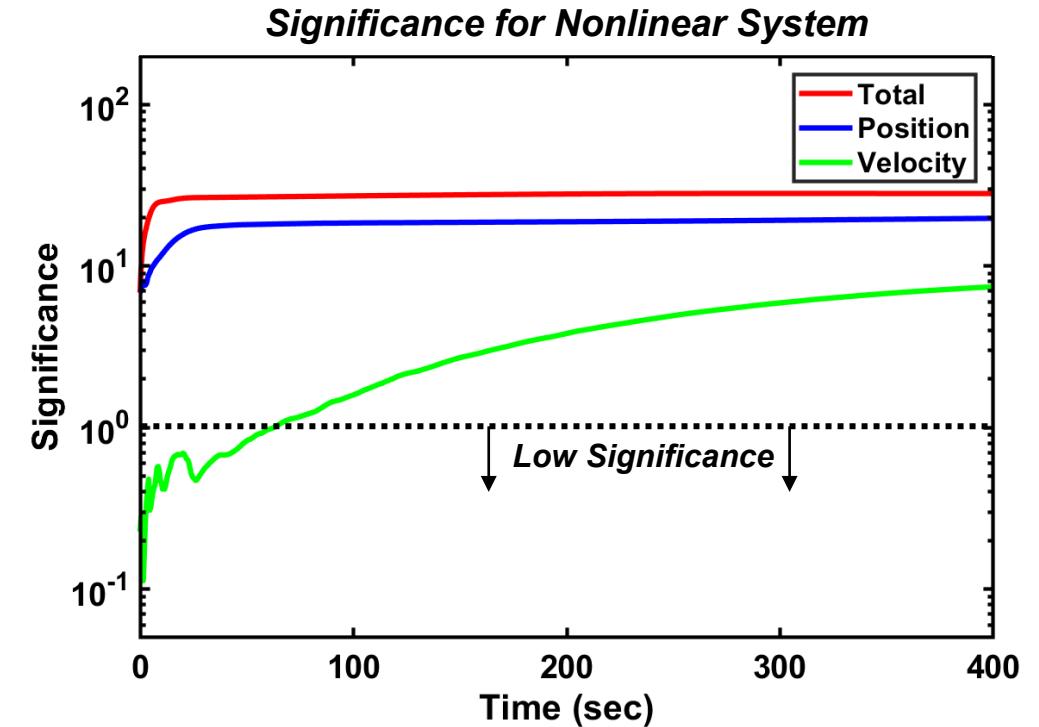
- **Bias significance**, λ_k , is the Mahalanobis distance between expected and actual error distribution for bias-naïve estimation:

$$\lambda_k = \frac{1}{2} \sqrt{\mathbf{m}_k^T \mathbf{P}_{k|k}^{-1} \mathbf{m}_k}$$



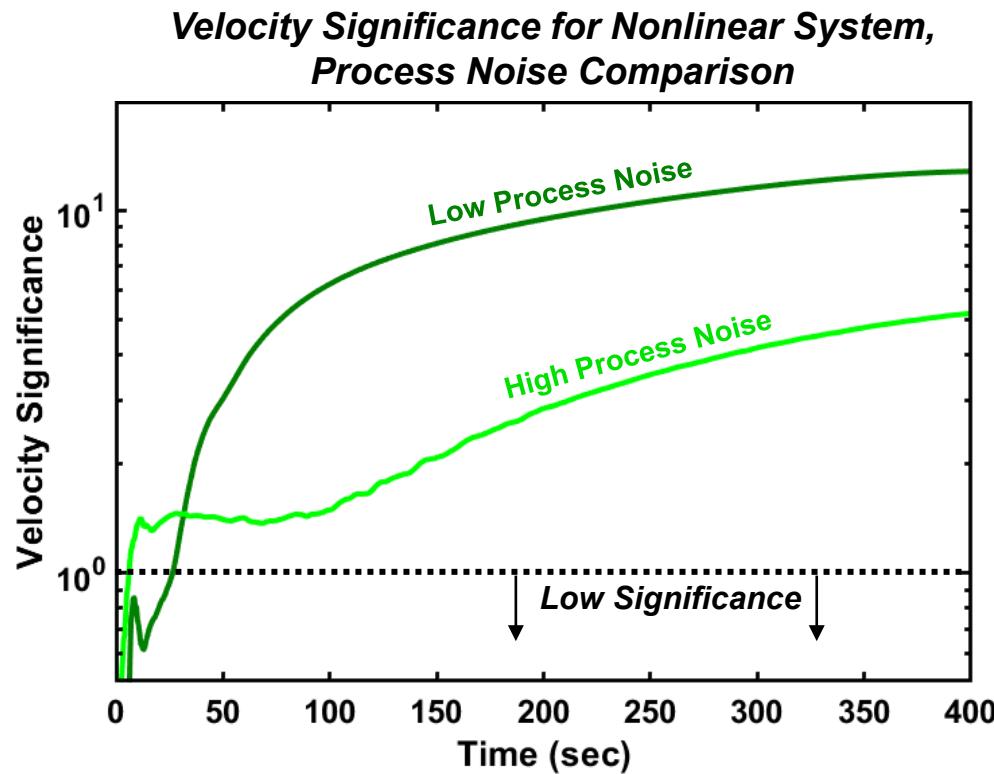
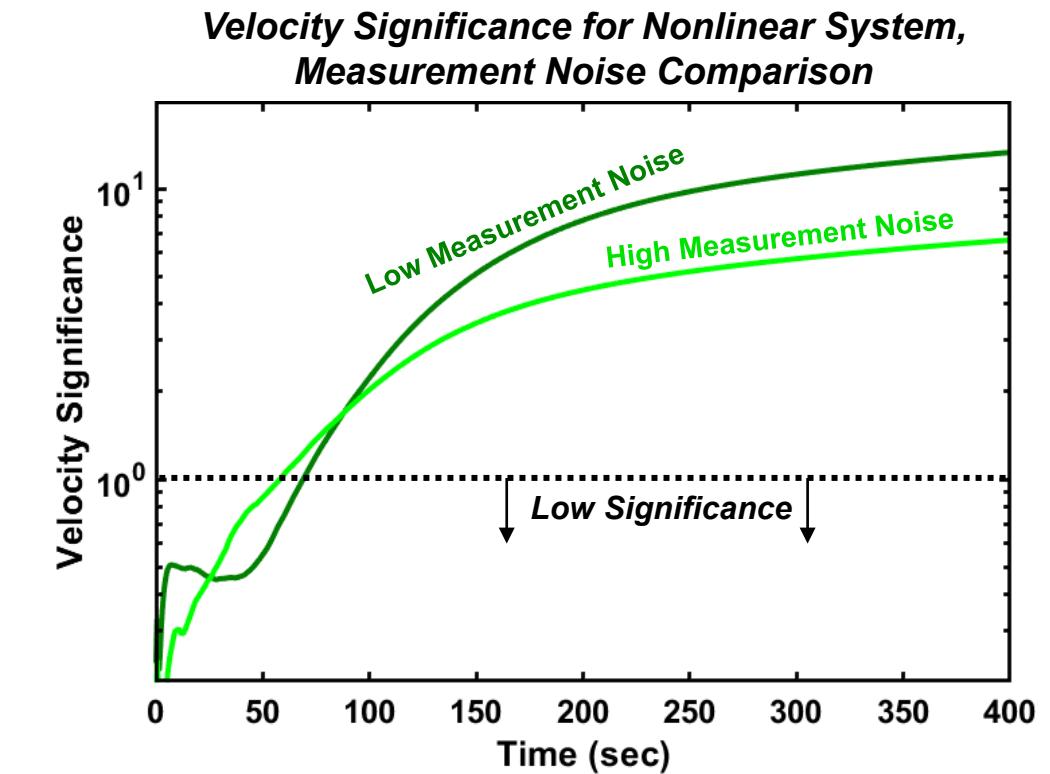
Mahalanobis Distance for Scalar Distributions

Bias Significance (cont'd)



Measurement bias is a clear contributor to position error; nonlinear systems also exhibit appreciable significance in velocity

Measurement and Process Noise Effects



Significance depends on the relative contribution from the multiple error sources; high process and measurement noise can lower significance

Summary

- Accounting for error sources in estimation is critical for association and fusion of tracking data from multiple sensors
- Common nuisance in practical applications is measurement bias, which differs from sensor to sensor
- This work analyzes the resultant effects on the estimation error distribution caused by measurement bias for:
 - Linear and nonlinear systems
 - Deterministic and stochastic biases
- Additionally, a quantitative measure of necessity to account for measurement bias is also proposed
- Future work includes asymptotic analyses and study of linearization error