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@ Distributed Tracking Architectures
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» Distributed tracking architectures fuse local tracking information from multiple sensors at a fusion node to
create global tracks

— Combining tracking and/or measurement information across sensors can increase accuracy and data association performance
through varied geometry and modalities

 Depending on constraints of sensor network, sensor information may by limited in many different ways,
leading to arich literature on effective distributing tracking?

1C.-Y. Chong, K.-C. Chang, and S. Mori, “A review of forty years of distributed estimation,” in Proceedings of International Conference on Information Fusion, 2018, pp. 1-8
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@ Reassociation and Refiltering at Fusion Node

« Noteworthy special case of distributed
tracking is the need to refilter local track
iInformation based on the information
history accumulated at the fusion node

— Disambiguated data association
— ldentification of motion model regimes
— Correction of local sensor tracking errors

 Fusion node can act as a “macro-tracker”
and refine local state estimates?!?

Data Association

-

Global

Dynamic Model Identification

1C.-Y. Chong, “Graph approaches for data association,” in Proceedings of International Conference on Information Fusion, 2012, pp. 1-8
2G. Castafion and L. Finn, “Multi-target tracklet stitching through network flows,” in Proceedings of IEEE Aerospace Conference, 2011
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]@[ Refiltering Using Track State Information

Correlations in Sensor Tracks
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Practical sensor networks often have strict
communications limits and are confined to
sending only track state information to a fusion
node

Track states from sensors can be correlated in
multiple different ways?:

— Time-to-time (temporal): A track state from one time
step to another is related due to recursive filtering

— Sensor-to-sensor: A track state at a different sensor
can have shared information, e.g., commonly-
observed maneuver, prior initialization information

Before refiltering, correlation must be
accounted for; focus of this talk is addressing
temporal correlation to enable refiltering at a
fusion node

— If unaccounted for, correlation will degrade estimates
and produce optimistic/pessimistic covariances

1C.-Y. Chong, K.-C. Chang, and S. Mori, “A review of forty years of distributed estimation,” in Proceedings of International Conference on Information Fusion, 2018, pp. 1-8
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]@[ Decorrelation of State Estimates

« Decorrelation across time and/or sensor can be
done via learning or modeling the correlation and
removing it (i.e., pre-whitening); approached many b'*v%#\.
ways, e.d., .
_ ion?

Tracklet fusion i

— Distributed Kalman filtering? | Measurement
Local Tracks X Model,

Target

— Adaptive linear estimation3 Process
: . Noi
 Focus on a model-based approach to decorrelation v e
of state estimates with non-zero process noise from Fusion Node  kememeeeee |
time-to-time for a sensor
— Employs a pseudomeasurement* formulation with Refiltered
conservative estimation of unknown measurement model Tracks

and process noise parameters; zero process noise case
treated previously®

1C.-Y. Chong, etal., “Architectures and algorithms for track association and fusion,” IEEE Aerospace and Electronics Systems Magazine, vol. 15, no. 1, pp. 5-13, 2000

2W. Koch, “Exact update formulae for distributed Kalman filtering and retrodiction at arbitrary communication rates,” Proceedings of International Conference on Information Fusion, Seattle, WA, 2009

3X. R. Li, Y. Zhu, and C. Han, “Unified optimal linear estimation fusion — Part |: Unified models and fusion results,” Proceedings of International Conference on Information Fusion, Paris, France, 2000

4L. Y. Pao, “Measurement reconstruction approach for distributed multisensor fusion,” Journal of Guidance, Control, and Dynamics, vol. 19, no. 4, pp. 842-847, 1996

5G. Frenkel, “Multisensor tracking of ballistic targets,” in Signal andData Processing of Small Targets, O. E. Drummond, Ed., vol. 2561,International Society for Optics and Photonics. SPIE, 1995, pp. 337— 346
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@ Outline

* Introduction
m) - Adaptive Temporal Correlation to Enable Refiltering
* Results

« Summary
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BE

Distributed Tracking System and Assumptions

« Goal: Decorrelate state estimates from a
single sensor to allow refiltering

— Fusion node only has access to state
estimates and state estimate covariances

— Dynamic model is known
— Local measurement model is unknown
— Process noise is known (for now)

— Fusion node receives data at measurement
rate (discussed later)

« Approach:

— Reconstruct effective measurement
information from track states?! in a global
coordinate system (similar to bookkeeping a
global information gain)

— Refilter effective measurement information

Target Dynamics:
X = f(Xp—1) + Vi—1

Target State —T
Dynamics

Vi—1 7 N(O, Qk—l)

Process Noise

Sensor Measurements:
Zj — h(Xk) + Wi

Measurement —T | T— Measurement
Noise

Measurement
Mapping

Extended Kalman filter (EKF):
Xpih—1 = f (Rp—1]6-1)
Prioo1 =FiPr_1pio1FL + Qi

State Estimate — Xg |k = Xg k-1 + Kk (2 — h (Xg|5-1))

Estimate Covariance — Py, = Prjp—1 — KkSk.K;;F
Kalman Gain — K, = Pk|k_1HZS;1

Innovation Covariance — S, = HkPkm_ng + Ry,

1L. Y. Pao, “Measurement reconstruction approach for distributed multisensor fusion,” Journal of Guidance, Control, and Dynamics, vol. 19, no. 4, pp. 842-847, 1996
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State Space Equivalent Measurements (SSEM)

Without knowledge of the sensor
measurement model, goal is to
construct effective measurement
iInformation in the same coordinate
system as the state space

« Assuming measurement matrix is

identity, one can solve for the
effective measurement vector and
covariance using Lemma 1

— Measurement rank could also be
estimated numerically if unknown

— Some matrix conditioning may be
necessary for reliable inversions

 With a method to reconstruct

measurements, now look at unknown
process noise

Lemma 1. Given a dynamics function, f(-), process noise matrices, Qp_1, and
the rank of the original measurements, M, the state space equivalent measure-
ments from a series of state estimates and covariances can be derived by:

1.

Construct propagated past state estimates, kk‘ k—1, and covariances matri-
CES, Pk\kfly by

)A(k|k:fl - f ()A(F;:fl|k71) ]
Pyir_1 = FPp_1 1 FL + Qi1

Obtain the inverse measurement covariance matrices, Rgl, using
-1
R.‘i: OATX(N—]W) :P_l _P_1
Ov_anyxnr Ov_nnyx(n=n) k|k klk—1

Calculate the Kalman gain matrices, K., with
Ky On s (v—nr)| = In — Pk|kP;‘1k,1a

Create measurement vectors, zj., from

2, = K|, (fikm - Pk\kP;‘lk_lik\k—l) :
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Conservative Estimation of Process Noise
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« Now, assume a process noise model is
known to the fusion node up to a set of
unknown parameters:

Qr_1(0k-1)
t

Process Noise Parameters

 Process noise parameters can be
conservatively estimated at the fusion
node by achieving a minimum feasible
information gaint, i.e., choose @ such that

Ji (0’) = Ji (9) > 0, for all values of 6’ #9

« Total decorrelation process is to form
SSEM and then estimate process noise
using above
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]@[ Ballistic Target Tracking Scenario

Example Scenario
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- Example: Fusion node refiltering track states from = oo
a radar that is tracking a ballistic target with a 2 Targe,
maneuvering target filter RO-8S

— State space is Earth-centered rotating position and
velocity

— Process noise model is spherically-distributed, white
noise in the acceleration dimension
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 Fusion node receives local sensor track states,
forms SSEMs with estimated process noise
parameters, and then refilters
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]@[ Radar Measurement Model

« Target is assumed to have aradar cross-
section (RCS) of 0 dBsm!
1.5} -7 {26 « Radar measurements are assumed to be
14l / M., from a phased-array-like system:
13k g | — Coordinate system is range-direction-cosine
122 (RUV)
§ 1-2¢ /“ 1 |08 — Range accuracy is dependent on radar
S 11T e E— bandwidth and signal-to-noise ratio (SNR)
% 1 g 118 5 — Angle accuracy is dependent on radar
32 beamwidth and SNR
0.9} 16
0.7r / | Bandwidth 100 MHz
06 - - - : - 12 .
100 200 300 400 500 600 Beamwidth 1 mrad
Time (s) Range: 0 dB SNR on 0 dBsm target 2700 km

1Square meters in decibels
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Refiltering Verification

Position Error (m)
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Reconstructed effective measurements with estimated process noise are sufficient to
closely recreate original filtered result

Local and refiltered process noise power spectral density: 0.01 m?/s3
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Improvements from Refiltering
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By refiltering with a dynamics-matched estimator, position and velocity
estimates are appreciably improved

Process noise power spectral density: 0.01 m?/s8 (Local), 0.00001 m?/s3 (Refiltered)
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@ Summary

« Studied temporal decorrelation of state estimates
at a fusion node to enable refiltering

— Allows for fusion node to exploit global information to
tailor estimation process and/or fix local sensor tracking
errors

« Decorrelation process was developed for a fusion
node with:

— Access to track states only
— No knowledge of sensor measurement model
— Known process noise model with unknown parameters

« Effectiveness of decorrelation and refiltering
shown through ballistic target tracking example

 Desired to extend to mismatched measurement
and fusion rates (shown empirically)
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