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]@[ Radar Target Characterization

. Many defense applications require the extraction of target Target Models
shape information from radar data for the purposes of
characterization and classification

« Often approached using classical Fourier-based imaging
techniques®

— Pro: Efficient, well-understood
— Con: Limited by traditional time-frequency relationships, e.g.,
bandwidth, aspect angle span

« Can also employ parametric target models that are fit to
received data*®

— Pro: Offer higher resolution than classical methods
— Con: Commonly require complex optimization

* In this work, differentiable point scattering models that offer
high resolution and efficient optimization are studied

*Citations are included in accompanying paper
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]@[ Outline

Introduction

’

Differentiable Radar Scattering Models

Examples

Summary
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]@[ Radar Signature Modeling

* For targets that slowly change viewing
perspectivel, the received response
from a radar transmission can be
written as

y(t,€) = x(t)e?*™ It « h(t, L)

Target

— x(t) is the transmit waveform

— fc is the transmit center frequency

— /¢ is the line-of-sight vector

— h(t,£)is the target impulse response

Target Impulse
. . . Response
« A scattering model is a parametric P

target impulse response?

h(t,¢;0)

1Relative to length of radar observation
2Frequency response also used
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]@[ Point Scattering Model

« A point scattering model is a composite
scattering model of the form:

h(t,2;0) Zh (t,£:0,,)

Point
Scatterers

« Each constituent impulse response is of
} the form?:

Target

(£, 6:0,) = an0(t + 2p70 /)

— ap, is the amplitude of the point
— Pnis the x-y-z location of the point

« Amplitude and position will be functions
of parameter vectors 6,, and line-of-sight ¢

1Assumes target features have approximately constant amplitude frequency response over observed band
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]@[ Differentiable Point Scattering Models

A differentiable point scattering model

(DPSM) is a point scattering model where

each point’s amplitude and position o
functions are differentiable with respect hn(t,€;0y) = and(t + 2p,£/c)
to the model parameter vector 4 [ ‘

Differentiable

« A DPSM allows for the calculation of the

gradient of data with respect to model

parameters
el g(6) T L
—>§ FCL l:‘s:t?;nn — DPSM =i Loss ——
« This can be chained with functions I I
before (functions that create DPSM
parameters) and after (functions of data,
e.g., loss)
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I@I Example Differentiable Scatterer Types
Scatterer Instantaneous Range
0.8 | - « Some examples of scatterer
B, common amplitude and position
06 ¢ definitions that are differentiable:
04 L — Fixed amplitude, constant over all
0.2 %. viewing perspectives
£ g — Fixed position, constant on target
5 't © axis over all viewing angles
% 0.2 | — Slipping position, assumes closest
o/ 4 \ 4 \ . .
Spherical point on ring centered around body
041 axis
0.6 ] — Spherical position, takes closest
08 point on sphere located at target
T origin
1
20 40 60 80 100
Time (s)
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Range Profile
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« Common form of radar data used
for demonstration is a range profile

e Can be shown to be of the form:
N
g(r,l) = Z VO R (27"/(: -+ 2]_2);1;6/(3)
n=1

— 7 is the range
— 7, is propagation phase delay

— R,.(7)is the autocorrelation of the
radar waveform x(t)

» Range profiles will be the main
data sourced used for model
optimization
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]@[ Range Profile Gradient

« Gradients of loss functions based on range profiles will depend on the gradient of the
data with respect to the model parameter vector 4

« Using chain rule and independence of scatterer parameter vectors 4,,, the gradient of
the range profile at a given range due to the nt" scatterer is

9g(r,) O, '
98(;“7 ) 6; (n Ry (2r /¢ + 2p£€/c) - Change in profile due to change in phase delay
oa,, |

Yn aTng(QT/C + 2p£€/c) + | Change in profile due to change in scatterer amplitude

OR..(2r/c+2pTe/c)
00,

* These terms can all be calculated for DPSMs and radar waveforms that can be written
analytically’

Ynln - Change in profile due to change in scatterer range

« DPSM codebase calculates these values for constructed models and given waveforms

Waveforms can also be approximated using analytic functions
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]@[ Outline

* Introduction

» Differentiable Radar Scattering Models

» « Examples
« Summary
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Simulated Examples

« Example model consists of three scatterers: < Radar parameters:

— Fixed scatterer
« Amplitude: 1 +j0 (1.01 +j0)
- Radial position: 0.5 m (0.6 m)
« Azimuthal position: 0 rad (0 rad)
+ Axial position: 2 m (2.1 m)
— Fixed scatterer
« Amplitude: 2 + 0j (1.9 + jO)
+ Radial position: 0 m (-0.1 m)
« Azimuthal position: 22.5° (22.5°)
+ Axial position: -2 m (-2.1 m)
— Slipping scatterer
« Amplitude: 0.5 +j0 (0.51 + jO)
+ Radial position: 0.1 m (0.1 m)
+ Axial position: 0 m (0.1 m)

(Initial estimates)

— Bandwidth: 500 MHz
— Waveform: Linear FM
— Noise: -20 dBW

Range Profile
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]@[ Model Fitting for Range Profile

Noisy Range Profile Initial Model Range Profile
10 ' ' ' \ ' ' ' 5l ' ' ' ' '_Initial_
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Measured range profile exhibits three distinct scatterers; initial model show appreciable
differences from true model range profile
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I@I Model Fitting for Range Profile (cont’d)
« Model parameters optimized using 250 ——— 16
i - =S tial
gradient descent ~ ~Sequential i
« Two common loss functions used 200 .
12
— Coherent: Square error of @ 8
hypothesized data relative to observed S 150 10
data IS o
(<] Q
— Noncoherent: Square error of E 100 18 5
amplitude of hypothesized data o =
relative to amplitude of observed © 16 3
range profile 50
. . . . p— = 4
« Sequential optimization also \
considered (i.e., coherent N L T ] P
optimization seeded by noncoherent) 5 10 15 20 25 30 35 40
Iteration
Coherent optimization finds nonoptimal local minimum; sequential optimization
successfully finds global minimum
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]@[ Model Fitting for Range Profile (cont’d)

Estimate Range Profiles Range Profile Residuals
51 Conerent [\ ' 511 Conerent
——Sequential ——Sequential
------ Truth —_ i
0 B {\ ; 0
= 5p T -5} |
m ]
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15} * . v 55 | | ‘ 1
I\ 14 J ‘ | |/
Il gl | 'Ml MH
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- 1 0 1 2 3 -3 -2 -1 0 1 2 3
Range (m) Range (m)
Sequential optimization allows for coherent estimation to effectively estimate target model
parameters; residual power is on the order of the additive noise power
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@ Model Fitting for Static Pattern

Noisy Static Pattern Initial Model Residual Image
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Initial model shows significant differences over all observed viewing angles
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]@[ Model Fitting for Static Pattern (cont’d)
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Iteration

Gradient descent allows for intelligent refinement of target model parameters for various
loss functions
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]@[ Model Fitting for Static Pattern (cont’d)

Noncoherent Estimate, Sequential Estimate,
Residual Image Residual Image
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Noncoherent estimation coarsely honed target model estimate; sequential estimation was able to
accurately estimate scattering model parameters to leave a residual on the order of the additive noise
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]@[ Summary

Radar target characterization is an important component of many defense missions

Fitting radar signature models to data can enable high resolution target estimates that
can be utilized for characterization

Efficient fitting and performance prediction can be afforded by differentiable point
scattering models by exploiting gradient information

Future work will investigate construction of initial estimates for seeding gradient
descent algorithms along with incorporation of non-point-like scatterers
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